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Synopsis 

For “monodisperse,” randomly coiled macromolecules, we find that the molecular weight, intrinsic 
viscosity, and diffusion coefficient are accurately related by 

[ ~ ] M D , ~  = 3.0 X 10-27(D~v~/T)-3(erg/oK)3/g 

This equation holds for denatured proteins in 6M GuHCl(aq) as well as for narrow polystyrene 
fractions in tetrahydrofuran. For a Schulz distribution of molecular weights, the weight measured 
from combining diffusion and viscosity data is closely approximated by 

MD,? = Mw0.425Mz0.575 

These equations are verified with measurements of wide molecular distributions of polystyrene in 
toluene and data from the literature. These relations provide a rapid, nondestructive method to 
determine a well-specified molecular weight average of small quantities of polymers in a wide diversity 
of solvents using quasielastic light scattering techniques to evaluate polymer diffusion coeffi- 
cients. 

INTRODUCTION 

With the development of simple, rapid, but accurate procedures for measuring 
polymer diffusion coefficients in solution using quasielastic laser light-scattering 
techniques,l a reexamination of the usefulness of the Mandelkern-Flory (MF) 
method2 for molecular weight determination from a combination of diffusion 
and viscosity measurements becomes a worthwhile proposition. For many of 
the novel polymers currently being synthesized, which often have complex 
chemical composition and are soluble only in unconventional solvents, the MF 
theory offers a possible easy route to molecular weight determination. However, 
synthetic polymers are invariably polydisperse, and one must address the 
question of how variability in molecular weight distribution affects the molecular 
weight determined by the MF method. More specifically, can one accurately 
define a particular molecular weight average measured from diffusion and vis- 
cosity analysis that is insensitive to the polymer-solvent system or degree of 
polydispersity? An approach to this problem is discussed in the following paper. 
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The method is tested using polystyrene samples of different polydispersities 
which were independently characterized. 

BACKGROUND 

According to Flory’s treatment of the solution hydrodynamics of flexible 
polymer coiIs,3 the intrinsic viscosity is related to the radius of gyration of the 
polymer by the equation 

(1) 

where +O is a constant which depends on the hydrodynamic model, a,, is the 
polymer chain expansion parameter as measured by intrinsic viscosity, and (Rg2) 
is the mean-square radius of gyration. Similarly, the translational diffusion 
coefficient a t  zero concentration may be written 

M[q] = 63/2+oa,3 (R,  2, 3/2 

where PO is a frictional constant, qo is the solvent viscosity, and af is the expansion 
parameter obtained in a frictional coefficient measurement. According to 
subsequent modifications of the Flory theory, a,, and af are not quite ident i~al .~ 
Combination of these equations leads to the Mandelkern-Flory equation2 

M[v]  = +o(P~) -~ (a , , / a f )~k  3 ( D h ~ / T ) - 3  (3) 

Application of this expression to molecular weight determination is based on 
the premise that the parameter 

is insensitive to polymer-solvent interaction. The earliest experimental evidence 
that eq. (4) is indeed insensitive to these parameters was given by ValleL5 

THE MF EQUATION IN POLYDISPERSE SYSTEMS 

To apply eq. (3) to molecular weight determination for most synthetic poly- 
mers, we must consider the effect of polydispersity on intrinsic viscosity and 
diffusion coefficient measurements. As is well known, vl] defines a viscosity- 
average molecular weight M,, through the Mark-Houwink equation which de- 
pends on the polymer-solvent interaction: 

[??I = KqMqa (5) 
A similar relation can be defined for the diffusion coefficient: 

DP = K D M D - ~  (6) 

where 3b = a + 1. However, the problem of suitably defining a diffusion coef- 
ficient average from the experimental optical mixing spectrum must be solved. 
By suitable spectral analysis procedures,6 it is possible to obtain a z -average 
diffusion coefficient (D!), and parameters related to the breadth and shape of 
the molecular weight distribution. To obtain the latter requires light scattering 
data of high p~ecision.~ The z-average diffusion coefficient cannot be related 
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to a well-defined molecular weight average in any simple way unless one assumes 
a specific functional form for the distribution of molecular weights. 

The Schulz distribution function is a unimodal distribution formula with two 
adjustable parameters which successfully describes the molecular weight dis- 
tributions obtained in a variety of condensation and addition polymerizations8 
as well as in certain fractionation by precipitation procedures.8 The Schulz 
function defines the concentration C(M)dM of molecules with molecular weight 
in the range M to M + dM by 

C(M)dM = yh+lMhe-yMdM/I'(h + 1) 

where the adjustable parameters h and y are related through the number- and 
weight-average molecular weights: M, = h/y, and MJM, = (h + 1Vh. Using 
this distribution, Ford et al. showedg that it is possible to relate the z-average 
diffusion coefficient to a diffusion-average molecular weight MD: 

where y and h are parameters used in defining the Schulz distribution and b is 
the exponent in eq. (6). Similarly, one may write 

Rewriting eq. ( 2 )  for polydisperse samples in terms of the constants of eqs. (5) 
and (6) gives 

where 

MD,? = Mga+l/MVa 

For a Schulz distribution eqs. (7) and (8) indicate 

1 r(h + 1) I'(h + 2 )  
MD'9 = I'(h + 3 b )  r ( h  + 2 - b )  

An alternative way of deriving eq. (10) is implicit in the analysis of Johnsenlo 
who used the Schulz function to evaluate polydispersity corrections to [q]  and 
(OF), which would enable correct comparison of hydrodynamic radii deduced 
by either quantity when working with polydisperse samples. 

Before we can apply eq. (9) to molecular weight determination of unknown 
polymers, two steps are necessary. We must first determine the hypothetically 
system-insensitive constant of proportionality p by an experimental route. 
Secondly, it would be a significant advantage to find a numerical approximation 
for eq. (10) that is simply and directly related to conventional molecular weight 
averages (rather than the Schulz parameters h and y), is accurate over a wide 
range of polydispersities, and a t  the same time is insensitive to the nature of 
polymer-solvent interactions reflected in the parameter b. 

To determine the @ value of eq. (4), two substantially different relatively 
monodisperse systems were used. Data for globular proteins denatured in 6M 
guanidine hydrochloride and 0.1M mercaptoethanol at 25OC and for polystyrene 
samples with 1.06 polydispersity in tetrahydrofuran a t  30°C were analyzed. 
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Fig. 1. Product M [ q ]  as a function DfqoIT. The straight line shows the best fit to a cubic relation 
between the two quantities. The slope of the line implies p = 2.3 X lofi. 

These measurements have been discussed previously.”J2 Each infinite dilution 
diffusion coefficient is extrapolated from diffusion coefficients a t  four or five 
different concentrations at  or below 10 mg/ml. The total light scattered was 
constant to within 1%, and a total of 1024 400-point frequency spectra were 
collected for each sample in less than 3 min. 

The data from the two relatively monodisperse systems are displayed in Figure 
1. The line gives the best least-squares fit to the data according to eq. (9). This 
line implies that @ = (2.27 f 0.09) X lo6, which is significantly below theoretically 
predicted results for flexible coils of 2.7 X lo6. The low value of @, in fact, is 
consistent with predicted values for solid spherical particles; but since each ho- 
mologous series of polymers follow eq. (6) with a value of b between 0.5 and 0.6, 
obviously a solid spherical model is not satisfactory either.11J2 

The accuracy with which eq. (9) predicts molecular weight depends on the 
accuracy in measurements of Dp and [q] .  We have determined that the accuracy 
of our DF measurements are 3%, of the solvent viscosity, 0.5%, and of the intrinsic 
viscosity, 2%. This leads to a 13% instrumental uncertainty in our molecular 
weight determinations. Using the accuracies cited by some  worker^,^ we con- 
clude that state-of-the-art equipment could decrease the overall instrumental 
uncertainty to 3%. 

In earlier work,ll we calculated the variation Of MD,,/[(MWM,)~’~] as a function 
of b and h. In order to define a more system-insensitive numerical approxi- 
mation to M D , ~ ,  applicable to wide polydispersity, we set the geometric mean 
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Fig. 2. For a Schulz distribution, F(h,b) = MQ,/M,,,O 4zsMzo 575 is shown as a function of width 
parameter h or polydispersity MJM,.  The upper curve corresponds to b = 0.6 and the lower one, 
to b = 0.5. 

of MD,, for the extreme b values and polydispersity of 2 equal to the weighted 
average of M ,  and M,: 

b = 0.5 b = 0.6 

and find m = 0.425. In Figure 2, MD,,/M, mMz is plotted for 0.5 < b < 0.6 
and 0.1 < h < 100. The upper limit of the range corresponds to b = 0.5. Note 
that the deviation of MD,, from the respective average Mw0.425Mz0.575 is never 
more than 7%, even for values of polydispersity as large as 11. 

We, therefore, conclude from the above that the appropriate form of the MF 
equation for molecular weight determination in polydisperse systems is 

(12) 

MD,, Mw0.425Mz 0.575 (13) 

MD,, [q] = 3.0 X 10-27(ot0q0/T)-3(erg/oK)3/g 

with 

RESULTS 

To test the usefulness of eqs. (12) and (13), we studied two broad molecular 
weight determinations of polystyrene dissolved in toluene at 25°C and also an- 
alyzed the data of Johnsenlo for a polydisperse polystyrene sample at  25°C in 
four different solvents made up of ethyl acetate and ethanol. The two samples 
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we measured were provided by the Dow Chemical Company and had been 
characterized by analytical gel permeation chromatography to indicate poly- 
dispersities (MJM,) of 2.5 and 4.6. Intrinsic viscosity measurements were made 
by Lenora A. Griffin while a participant in the N.S.F. Student Science Training 
Program EPP 75-05603. 

Since the above discussion depends on z -average diffusion coefficients which 
are evaluated by spectral analysis in the high-frequency limit: the spectrum was 
fitted from the first to the twelfth half-width.11J2 Using these values to ex- 
trapolate to DF, the MD,, values determined for the two samples by eq. (12) are 
3.43 X lo5 and 4.16 X lo5. The values of Mw0.425Mz0.575 computed for the two 
samples from the reported GPC molecular weight averages using eq. (13) agree 
with these results to within 4% on the sample with polydispersity of 2.5 and to 
within 10% on the sample with a polydispersity of 4.6. Both these comparisons 
are within our experimental uncertainty. 

Johnsenlo studied a polystyrene sample approximating a Schulz distribution 
with 1.46 polydispersity in ethyl acetate-ethanol solutions ranging from 0% to 
10.66% in ethanol. It is concluded that /3 varies by 15% over this range in solvent 
composition; however, on the basis of the large uncertainties associated with the 
presented diffusion coefficients extrapolated to zero concentration, this con- 
clusion does not seem definitively established. If we interpret Johnsen's data 
using eq. (12), the apparent molecular weight varies between 3.40 X lo5 and 
2.25 X lo5, the mean being 2.74 X lo5. In only one system were the data of suf- 
ficient quality to have four diffusion constants within 5% of their best straight- 
line fit. This measurement produces a molecular weight average of 2.50 X lo5. 
The values of h and y for the sample studied by Johnsenlo lead to a molecular 
weight determination of M,0.425Mz0.575 = 2.64 X lo5. In the systems studied, 
the agreement between the predictions of eqs. (12) and (13) is within the un- 
certainty limits consistent with a 7% uncertainty in diffusion coefficient. Judging 
from the quality of the concentration extrapolations, this degree of uncertainty 
cannot be excluded. 

DISCUSSION AND CONCLUSIONS 

We have proposed that application of the MF method combining a z-average 
0; and [t] determines a molecular weight average which closely approximates 
that deduced by eq. (13), irrespective of polymer-solvent combination. Data 
are presented for solutions of polydisperse polystyrenes in toluene which support 
this contention. Our arguments, however, are based on the two assumptions 
that the polymer has a unimodal molecular weight distribution and that indi- 
vidual macromolecules approximate spherical symmetry. In addition, to es- 
tablish the universal reliability of eq. (13), i t  would be advantageous to study 
other polymer-solvent combinations which include bimodal distributions. A 
particularly fruitful group of systems for the implementation of the procedure 
described above are the block copolymers in dilute solution recently discussed 
byWang.13 

Quasielastic laser light scattering permits rapid determination of the diffusion 
coefficient. Current developments in the determination of intrinsic viscosity 
from single concentration mea~urementsl~ suggest that intrinsic viscosity can 
be measured with equal speed. The result is that from two rapid measurements 



QUASIELASTIC MEASUREMENTS 3267 

the molecular weight can be quickly calculated for an unknown polymer-solvent 
combination. If more information, such as a Mark-Houwink relation, is known, 
it is in addition possible to deduce a measure of polydispersity. However, we 
have previously proposed more accurate methods for evaluating molecular weight 
averages and polydispersity parameters in these systems.12 
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